CC Geometry eTools

Table of Contents

General eTools 5
Algebra Tiles (CPM) 6
Desmos Graphing Calculator 9
Probability Tools (CPM) 12
Similarity Toolkit (CPM) 16
Rigid Transformations eTool (CPM) 18
3D Blocks (CPM) 21
Shape Bucket (Desmos) 23
Generic Venn Diagram (Desmos) 24
Chapter 1 25
CCG 1.1.1: Quilt Pictures and PowerPoint (.pps \& .doc) 26
CCG 1.1.5: The Power of X Videos 27
CCG 1.2.1: 1-47 3D Nets (CPM) 29
CCG 1.2.2: Transformations with 1-59 \& 1-60a, c (Desmos) 32
CCG 1.2.6: 1-100 Spiral Student eTool (Desmos) 34
CCG 1.3.1: 1-111 Venn Diagrams Shape A, B \& C eTools (Desmos) 36
CCG: 1.3.2 1-117 Student eTool (Desmos) 39
Chapter 2 40
CCG 2.1.2: Marcos' Tile Pattern (CPM) 41
CCG 2.1.3: Reflection of Light Teacher Demonstration (CPM) 43
CCG 2.1.4: Triangle Sum Theorem (Desmos) 45
CCG 2.2.2: Area of a Triangle (Desmos) 47
CCG 2.2.3: Shape Bucket (Desmos). 48
CCG 2.3.1: Triangle Inequality (Desmos) 49
CCG 2.3.2: The Pythagorean Theorem (Desmos) 50
Chapter 3 52
CCG 3.1.2: Similarity Stretching Word Document (Doc) 53
CCG 3.1.4: Mt. Rushmore Unveiling Video 55
CCG 3.2.1 Similarity Toolkit (CPM) and Video 56
CCG 3.2.1: 3-48b \& 3-48c Student eTool (CPM) 58
CCG 3.2.1: 3-50a, 3-50b \#1 \& \#2 Student eTool (CPM) 60
CCG 3.2.4: 3-84b \#1 \& \#2, 3-85b \& 3-86 (CPM) 62
Chapter 4 65
CCG 4.1.1: Leaning Tower of Pisa (Desmos) and Information Video 66
CCG 4.1.3: 4-23 Student eTool (Desmos) 68
CCG 4.1.5: History of the Statue of Liberty Video 69
CCG 4.2.2: 4-64 Student eTool (CPM) 71
CCG 4.2.3: 4-76 Student eTool (CPM) 72
CCG 4.2.4: Random Number Generator (random.org) 73
CCG 4.2.4: 4-94 Student eTool (CPM) 75
CCG 4.2.5: 4-101, 4-102 \& 4-103 Spinner (CPM) 76
Chapter 5 78
CCG 5.1.4: El Capitan Climber Video 79
CCG 5.1.4: 5-38 Student eTool (Desmos) 81
CCG 5.3.5: 3D Model Box (CPM) 82
CCG 5.3.4: 5-107c Student eTool (Desmos) 83
Chapter 6 84
CCG 6.1.1: 6-1 Student eTool (CPM) 85
CCG 6.1.3: 6-20a, 6-20b \& 6-21 (CPM) 86
CCG 6.2.4: Monty Hall Technology Tool 88
CCG 6.2.5: Snowflake Videos 91
Chapter 7 95
CCG 7.1.1: 7-1b Student eTool (Desmos) 96
CCG 7.1.3: 7-21 Student eTool (Desmos) 98
Chapter 8 99
CCG 8.1.3: Exterior Angles (Desmos) 100
CCG 8.3.2: 8-100 Student eTool (Desmos) 103
Chapter 9 104
CCG 9.1.1: 9-2 Student eTool (CPM) 105
CCG 9.1.1: 9-4 Student eTool (CPM) 106
CCG 9.1.2: 9-14 Student eTool (CPM) 107
Chapter 11 108
CCG 11.2.2: 11-92 Student eTool (Desmos) 109

General eTools

Algebra Tiles (CPM)

This tutorial describes how to use the Algebra Tiles including additional features.

Click on the link below to access eTool.

Algebra Tiles (CPM)

1. The top bar has three main parts: Pen \& Paper Icon, '?' Icon, and the Arrow Icon.

1. Select the Pen \& Paper Icon to:

Options - Add Title and Description and Enable/Disable Tools.
Clear Tiles - This will remove all the tiles that are in the tile area.
Save - This will save all the changes made.
2. Select the '?' icon for directions.
3. Select the Arrow Icon at the right to open and close the tray.

2. Drag tiles from the tray at the left to the display area at the right.

1. Select one of the tiles and drag it to the tile area.
2. Use the sliders in the tray to change the size of the tiles.
3. Double click tiles to change orientation (horizontal/vertical).
4. Click on a tile once to change the sign (+ -).

Note: The color of the tile will turn to red for negative sign.

3. Choose from a variety of different mats. Also choose from a variety of sizes to fit on various devices.

	No Background		
	Grid		
	Dot Grid		
	Expression Mat		
$=$	Equation Mat 1		
	Equation Mat 2		
?	Comparison Mat 1		
	Comparison Mat 2		
	Cornerpiece		
Fit	Phone	S. Tablet	Tablet

4. Choose from a variety of different tiles:

- Click the arrow next to the tool to view/hide the options for each tool.

Backgrounds
Algebra Tiles
Base Ten Blocks
Number Lines
Area and Perimeter
General Tools

Desmos Graphing Calculator

This free graphing calculator allows students to create a free account to save all of their graphs, animations, and projects created.

Click on the "Desmos Graphing Calculator" link below.
Desmos Graphing Calculator

1. Click on all of the buttons. Try it out! For extra help, click the "?".

2. Click on the interactive tours below for help to create:

Sliders
Tables
Advanced Tables
Restrictions

3. The interactive tours will NOT let you make a mistake! Try the links above!

Interactive Tours
Team Desmos
posted this on December 29, 2013 22:13

Try one (or alll) of the interactive tours to learn more about sliders, tables, restrictions, and more:

4. Need additional help? Watch these very short excellent videos!

Desmos Introduction
Moveable Points
Graph Inequalities
Piece-Wise Function
5. The video links will help you with many of your graphing projects!

6. If you still need help, check out Desmos "Knowledge Base"

 Desmos Knowledge Base
Probability Tools (CPM)

Click on the link below.

Probability Tools (CPM)

1. Spinners:

- Drag one or more spinners to the board.
- Resize the spinners.
- Choose color, number of sections, and labels.
- Hide subdivisions.
- Create Mystery Spinners.
- Click the spinners to spin.

2. Dice:

- Drag one or more dice to the board.
- Choose dice color.
- Redesign the die with a variety of color, dot numbers, or Arabic numbers.
- Click each die to spin.

3. Bag:

- Drag one or more bags to the board.
- Choose the number, shape, and color of bag contents.
- Choose with or without replacement.
- Choose the number of items to draw.
- When finished, click the bad to shake and draw.

4. Coins:

- Coins are labelled "H" for Heads and "T" for Tails.
- Choose the color.
- Drag one or more coins to the board.
- Click each of them to spin.

H

H

5. Standard Deck of Cards:

- Drag one or more decks to the board.
- Choose with or without replacement and the number of cards draw at once.
- Modify the deck by eliminating specific cards or entire suits or number.
- Click the deck to draw the cards.

6. Random Number Generator:

- Drag the random number generator to the board.
- Indicate the number of integers to generate.
- Indicate the range for each random number.
- Click to randomize.

Similarity Toolkit (CPM)

The similarity toolkit allows students to explore two triangles to determine congruency or similarity given SSS, SSA, SAS, AAA, etc.. Students show how two triangles are similar or congruent using rigid transformations (translation, rotation, and reflexion).

1. Click on the "Similarity Toolkit" link below. For additional help, click on the "Similarity Toolkit Video".

Similarity Toolkit Video
Similarity Toolkit (CPM)

2. Similarity Toolkit Basic Controls:

3. Indicate what sides/angles are similar/congruent.

4. By going to the Advanced Settings, indicate what angles and sides you want shown!

Rigid Transformations eTool (CPM)

This eTool will record the steps you create showing translation, rotation, and reflection.

Click on the first link for the eTool. Click on the video links to view the use of the eTool.

- Twelve games using the key lock are also available.
- This tool is designed so that teachers/students can create many more games.

Rigid Transformations
Using RT Tool $=1$
Creating an RT Puzzle

1. Steps are shown in the Tray at the left while the action occurs in the Display Area at the right.

2. When playing, active steps are highlighted.

3. In the gear menu, you can create puzzles, clear, or save your projects.

4. Check the "?" for more help or watch the videos above.

3D Blocks (CPM)

Click on the link below.

3D Blocks (CPM)

1. 3D Blocks (CPM)

- Build by clicking the top of blocks or the pad.
- Remove by clicking the side of blocks.

2. Choose the view:

- Isometric view is in step 1 above.
- Also, choose Front, Right, or Top views.

FRONT

RIGHT

3. Create a Puzzle:

- Design your own puzzle by showing only the views you choose.
- Other students attempt to build your structure from the given views.

Shape Bucket (Desmos)

Click on the link below for the "Shape Bucket"

Shape Bucket(Desmos)

1. Use the "Shape Bucket" to explore geometric concepts.

Generic Venn Diagram (Desmos)

Click on the link below.

Generic Venn Diagrams (Desmos)

1. Create your own Venn Diagrams.

Chapter 1

CCG 1.1.1: Quilt Pictures and PowerPoint (.pps \& .doc)

Click on the links below for the "Quilt Pictures and PowerPoint Presentation"

Quilt PowerPoint Presentation
Quilt Pictures

1. Examples:

CCG 1.1.5: The Power of X Videos

Click on the link below for the "Power of X Video and Beyond the Power of X Video"

The Power of X '
Behind the Power of X ?

1. Human kaleidoscope

TEDxSummit intro: The power of x
2. The making of the film:

CCG 1.2.1: 1-47 3D Nets (CPM)

These nets are interactive. Click on the sides to raise or lower them. Drag in a circular motion outside of the net to rotate in space. Go the the "?" for more help!

Click on the link below.
1-47 3D Nets (CPM)

1. 47a:

2. Get the other nets by going to the Gear menu!

Reset
Select Net
3. 47b:

4. 47c:

5. 47d:

CCG 1.2.2: Transformations with 1-59 \& 1-60a, c (Desmos)

Click on the links below.

1-59 Student eTool
1-60a Student eTool
1-60c Student eTool

1. 1-59: Click the folder buttons to view.

2. 1-60a: Click the folder buttons to view the reflections. Drag the slider to view the rotation.

3. 1-60c: Drag the Angle Slider to view the rotation.

CCG 1.2.6: 1-100 Spiral Student eTool (Desmos)

Click on the link below for the "1-100 Spiral Student eTool"

1-100 Spiral Student eTool (Desmos)

1. Move the slider. In how many degrees does the figure rotate back to itself?

2. To toggle between continuous play and stop, click the play/pause button.

CCG 1.3.1: 1-111 Venn Diagrams Shape A, B \& C eTools (Desmos)

Click on the link below.

Shape Bucket(Desmos)
Generic Venn Diagram(Desmos)
1-111 Venn Diagram A: Student eTool(Desmos)
1-111 Venn Diagram B: Student eTool(Desmos)
1-111 Venn Diagram C: Student eTool(Desmos)

1. Generic Venn Diagram

- Type the attributes for each circle at the left
- Fill the circles appropriately.

2. Venn Diagram A:

- Hide the tray for more room to move the shapes.
- Enlarge/shrink the shapes by using the mouse or pinching on a tablet.

3. Venn Diagram B:

- Hide the tray for more room to move the shapes.
- Enlarge/shrink the shapes by using the mouse or pinching on a tablet.

4. Venn Diagram C:

- Hide the tray for more room to move the shapes.
- Enlarge/shrink the shapes by using the mouse or pinching on a tablet.

5. Shape Bucket

Shape Bucket

Drag the shapes by the colored dot.
Click the folders to hide/show a
shape.

(5) circle
(5) square
(5) kite
(5) rhombus
(D) parallelogram
(D) trapezoid

-

CCG: 1.3.2 1-117 Student eTool (Desmos)

Click on the link below to access eTool.

1-10 Student eTool (Desmos)

Use this eTool to learn more about different Polygons and Venn Diagram.

1. Move a shape to the appropriate section on the Venn Diagram.

- Click the colored dot and drag it to the appropriate section on the Venn Diagram

2. Click the folder icon before the name of the shape to view or hide a shape.

Chapter 2

CCG 2.1.2: Marcos' Tile Pattern (CPM)

Tessellate the parallelograms by sliding them up, down, or sideways. Double click the yellow parallelogram to rotate.

Click the link below.
Marcos' Tile Pattern (CPM)

1. This interactive eTool starts with the following parallelograms. Drag the blue tile to tessellate.
2. Drag until the entire space is covered.

3. Continue to double click to rotate at 90 degree intervals.

CCG 2.1.3: Reflection of Light Teacher Demonstration (CPM)

Click on the link below for the "Reflection of Light Demonstration"
Reflection of Light Demonstration

1. Reflect off a mirror.

2. Use chalk dust.

CCG 2.1.4: Triangle Sum Theorem (Desmos)

Click on the link below for the "Angles in a Triangle."

Triangle Sum Theorem (Desmos)

1. Triangle Sum Theorem:

2. How does "Show Parallel Lines" help when determining the sum of the interior angles of a triangle?

CCG 2.2.2: Area of a Triangle (Desmos)

Click on the link below for the "Area of a Triangle."
Area of a Triangle (Desmos)

1. Move sliders to change the shape of the triangle.

Area of a Triangle
Move the sliders to construct various triangles and to create a parallelogram.

2. Rotate a second copy of the triangle on itself to form a parallelogram.

CCG 2.2.3: Shape Bucket (Desmos)

Click on the link below for the "Shape Bucket."

Shape Bucket (Desmos)

1. Shape Bucket:

Shape Bucket
Drag the shapes by the colored dot.
Click the folders to hide/show a
shape.
circle
square
kite
marallelogram
trapezoid
rectangle
ris

CCG 2.3.1: Triangle Inequality (Desmos)

Click on the link below for the "Triangle Inequality."
Triangle Inequality (Desmos)

1. Using the sliders, adjust the side lengths.

2. Drag the B handles until they form a vertex of a triangle if possible.

CCG 2.3.2: The Pythagorean Theorem (Desmos)

Click on the link below for the "The Pythagorean Theorem."

The Pythagorean Theorem (Desmos)

1. Pythagorean Theorem:

2. Drag the colored shapes to fill $\mathrm{c}^{\wedge} 2$. Do they fit?

Does $a^{2}+b^{2}=c^{2}$?

Chapter 3

CCG 3.1.2: Similarity Stretching Word Document (Doc)

Click on the link below for the "Similarity Stretching Word Document".
Similarity Stretching Word Document

1. Original:

Lesson 3.2.1

STRETCHING EXERCISE

Original

2. Horizontal Stretch:

Lesson 3.2.1

STRETCHING EXERCISE

Original

3. Vertical Stretch:

Lesson 3.2.1

STRETCHING EXERCISE

Original

CCG 3.1.4: Mt. Rushmore Unveiling Video

Click on the link below for the "Mt. Rushmore Unveiling Video"
Mt. Rushmore Unveiling ${ }^{\text {Prar }}$

This video shows historical footage.

CCG 3.2.1 Similarity Toolkit (CPM) and Video

Click on the link below for the "Similarity Toolkit and Video"
Similarity Toolkit (CPM)
Similarity Toolkit Video (CPM) ${ }^{2}$

1. Go to "?" for HELP.

2. Link Two Angles:

*) CPM Similarity Toolkit

Notes

- Show/Hide Labels

Side lengths and Ratios

3. Saved Link:

4. Side Lengths and Ratios:

CPM Similarity Toolkit

Notes

- Show/Hide Labels

F Side lengths and Ratios

$$
\begin{array}{c|r}
\triangle \mathrm{ABC} & \triangle \mathrm{DEF} \\
\begin{array}{c|c}
\triangle \mathrm{a}=4.8 & \mathrm{~d}=4.0 \\
\mathrm{~b}=5.9 & \mathrm{e}=4.5 \\
\mathrm{c}=5.2 & \mathrm{f}=3.7
\end{array} \\
\frac{\mathrm{a}}{\mathrm{f}}=\frac{4.8}{3.7}=1.3 \\
\frac{\mathrm{~b}}{\mathrm{e}}=\frac{5.9}{4.5}=1.3 \\
\mathrm{c}=\frac{5.2}{\square}=1.3
\end{array}
$$

CCG 3.2.1: 3-48b \& 3-48c Student eTool (CPM)

Click on the link below for the "3-48b \& 3-48c Student eTool (CPM)."
3-48b Student eTool (CPM)
3-48c Student eTool (CPM)

1. 3-48b Student eTool:

2. 3-48c Student eTool:

* ? CPM Similanity Toolkit

CCG 3-48c

- Notes
- Show/Hide Labels
- Side Lengths and Ratios

CCG 3.2.1: 3-50a, 3-50b \#1 \& \#2 Student eTool (CPM)

Click on the link below for the "3-50a, 3-50b \#1 \& \#2 Student eTool (CPM)."
3-50a Student eTool (CPM)
3-50b \#1 Student eTool (CPM)
3-50b \#2 Student eTool (CPM)

1. 3-50a Student eTool:

\% ? CPM Similarity Toolkit

3-50a Student eTool

- Notes
- Show/Hide Labels
- Side Lengths and Ratios

2. 3-50a \#1 Student eTool:

*) ? CPM Similarity Toolkit

3-50a \#1 Student eTool

Notes

- Show/Hide Labels

Side Lengths and Ratios

3. 3-50b \#2 Student eTool:

? CPM Similanity Toolkit
3-50b \#2 Student eTool
Notes
Show/Hide Labels

- Side Lengths and Ratios

CCG 3.2.4: 3-84b \#1 \& \#2, 3-85b \& 3-86 (CPM)

Click on the links below.

3-84b \#1 Student eTool (CPM)
3-84b \#2 Student eTool (CPM)
3-85b Student eTool (CPM)
3-86 Student eTool (CPM)

1. 3-84b \#1 Student eTool:

CPM Similarity Toolkit

3-84b \#1 Student eTool

- Notes
- Show/Hide Labels

Side Lengths and Ratios

2. 3-84b \#2 Student eTool:

? CPM Similarity Toolkit

3-84b \#2 Student eTool

Notes
Show/Hide Labels
Side Lengths and Ratios

3. 3-85 Student eTool:

*) CPM Similarity Toolkit
 CCG 3-85
 - Notes
 - Show/Hide Labels
 - Side Lengths and Ratios

4. 3-86 Student eTool:

CPM Similarity Toolkit
 3-86 Student eTool
 Notes
 - Show/Hide Labels
 Side Lengths and Ratios

Chapter 4

CCG 4.1.1: Leaning Tower of Pisa (Desmos) and Information Video

Click on the link below for the "Leaning Tower of Pisa (Desmos) and

 Information Video"4-1 Student eTool (Desmos)
Leaning Tower of Pisa Information Video

1. Estimate the angle the tower is leaning using the protractor.

2. This video shows the architecture of the Leaning Tower of Pisa.

CCG 4.1.3: 4-23 Student eTool (Desmos)

Click on the link below for the 4-23 Student eTool.

Slope Ratios (Desmos)
CCG 4-23 Student eTool

4-23. On your paper, draw a slope triangle with a slope angle of 45°.
a. Now visualize what would happen to the triangle if the slope angle increased to 55^{*} Which would be longer, Δy or Δx ? Explain your reasoning.

HINT: Drag the GREEN point to increase the angle.
b. Create a triangle with a slope angle measuring 55°. Then use the resulting slope ratio to solve for x.

HINT: Drag the GREEN point to create the triangle in part (b). Use the grid to approximate an answer. Use the slope formula to solve for x.

CCG 4.1.5: History of the Statue of Liberty Video

Click on the link below for the "History of the Statue of Liberty."
History of the Statue of Liberty
1.

2.

3.

4.

5.

CCG 4.2.2: 4-64 Student eTool (CPM)

Click on the link below for the "4-64 Student eTool (CPM)."

4-64 Student eTool (CPM)

CCG 4-64 Student eTool (CPM):

Click both spinners.

Spinner \#1

$\begin{aligned} P(\mathrm{I}) & =1 / 2 \\ \mathrm{P}(\mathrm{U}) & =1 / 6\end{aligned}$
$P(A)=1 / 3$

$P(T)=1 / 4$
$\mathrm{P}(\mathrm{F})=3 / 4$

CCG 4.2.3: 4-76 Student eTool (CPM)

Click on the link below for the "4-76 Student eTool (CPM)."

4-76 Student eTool (CPM)

CCG 4-76 Student eTool (CPM):

CCG 4-76 Student eTool
4-76. There is a new game at the school fair called "Pick a Tile," in which the player reaches into two bags and chooses one square tile and one circular tile. The bag with squares contains three yellow, one blue, and two red squares. The bag with circles has one yellow and two red circles. In order to win the game (and a large stuffed animal), a player must choose one blue square and one red circle.

Choose one blue square and one red circle to win.

It costs $\$ 2$ to play.
a. Make a tree diagram for this situation. Remember to take into account the duplicate tiles in the bags.
b. Find the probability of a player choosing the winning blue square-red circle combination.
c. Should Gerri and Marty play this game? Would you? Why or why not?

Pick a Tile

Square Tiles

Circular Tiles

CCG 4.2.4: Random Number Generator (random.org)

Click on the link below for the "Random Number Generator."

Random Number Generator online
1.

Random Integer Generator

This form allows you to generate random integers. The randomness comes from atmospheric noise, which for many purposes is better than the pseudo-random number algorithms typically used in computer programs.

Part 1: The Integers

Generate 100 random integers (maximum 10,000).
Each integer should have a value between 1 and 100 (both inclusive; limits $\pm 1,000,000,000$).
Format in 5 column(s).
Part 2: Go!
Be patient! It may take a little while to generate your numbers...

Get Numbers
 Reset Form
 Switch to Advanced Mode

Note: The numbers generated with this form will be picked independently of each other (like rolls of a die) and may therefore contain duplicates. There is also the Sequence Generator, which generates randomized sequences (like raffle tickets drawn from a hat) and where each number can only occur once.
2.

Random Integer Generator

Here are your random numbers:

68	94	43	46	94
57	35	39	76	72
99	11	4	43	46
70	30	12	40	32
50	87	74	80	7
29	47	18	52	17
50	7	26	42	57
86	74	98	65	82
29	24	35	26	85
36	4	50	19	74
99	61	21	73	79
67	34	96	4	90
69	52	58	28	4
14	18	56	98	51
89	85	43	37	86
81	14	60	7	7
90	22	44	18	4
29	50	85	77	16
68	12	77	93	99
30	45	95	98	97

Timestamp: 2014-02-12 23:41:36 UTC
Again! Go Back

Note: The numbers are generated left to right, i.e., across columns.
3.
4.

CCG 4.2.4: 4-94 Student eTool (CPM)

Click on the link below for the "4-94 Student eTool (CPM)."

4-94 Student eTool (CPM)

CCG 4-94 Student eTool (CPM):

4-94 Student eTool
4-94. Sometimes it is easier to figure
out the probability that something will
not happen than the probability that it
will. When finding the probability that
something will not happen, you are
looking at the complement of an
event. The complement is the set of all
outcomes in the sample space that are
not included in the event.
Show two ways to solve the problem
below, then decide which way you
prefer and explain why.
a. Crystal is spinning the spinner at
right and claims she has a good chance
of having the spinner land on red at
least once in three tries. What is the
probability that the spinner will land
on red at least once in three tries?
b. If the probability of an event A is
represented symbolically as P(A), how
can you symbolically represent the
probability of the complement of
event A?
P Probability Tools
B General Tools

CCG 4.2.5: 4-101, 4-102 \& 4-103 Spinner (CPM)

Click on the link below for the "4-101, 4-102 \& 4-103 Spinner (CPM)."
4-101 Spinner (CPM)
4-102 Spinner (CPM)
4-103 Spinner (CPM)

Take A Spin Games

4-101: Take A Spin

4-101. TAKE A SPIN

Consider the following game: After clicking the wheel at right, you win the amount spun.
a. If you play the game 10 times, how much money would you expect to win? What if you played the game 30 times? 100 times? Explain your process.
b. What if you played the game n times? Write an equation for how much money someone can expect to win after playing the game n times.
c. If you were to play only once, what would you expect to earn according to your equation in part (b)? Is it actually possible to win that amount? Explain why or why not.

Take A Spin \#1

4-102: Take A Spin

CCG 4-102 Student eTool

4-102. What if the spinner looks like the one at right instead?

Click the wheel to spin. Total your winnings from each spin.
a. If you win the amount that comes up on each spin, how much would you expect to win after 4 spins? What about after 100 spins?
b. Find this spinner's expected value. That is, what is the expected amount you will win for each spin? Be ready to justify your answer.
c. Gustavo describes his thinking this

Take A Spin \#2
 way: "Half the time, Ill earn nothing. One-fourth the time, I'll earn $\$ 4$, and the other one-fourth of the time I'll earn $\$ 100$. So, for one spin, I can expect to win $(1 / 2)(0)+(1 / 4)(\$ 4)+$ (1/4)(\$100)." Calculate Gustavo's expression. Does his result match your result from part (b)?

4-103: Take A Spin

CCG 4-103 Student eTool

4-103. Jesse has created the spinner at right. This time, if you land on a positive number, you win that amount of money. However, if you land on a negative number, you lose that amount of money! Want to try it?
a. Before analyzing the spinner, predict whether a person would win money or lose money after many spins.
b. Now calculate the actual expected value. How does the result compare to your estimate from part (a)?
c. What would the expected value be if this spinner were fair? Discuss this with your team. What does it mean for a spinner to be fair?
d. How could you change the spinner to make it fair? Draw your new spinner and show why it is fair.

Take A Spin \#3

Chapter 5

CCG 5.1.4: El Capitan Climber Video

Click on the link below for the "El Capitan Climber Video"
El Capitan Climber
1.

2.

3.

4.
5.

CCG 5.1.4: 5-38 Student eTool (Desmos)

Click on the link below for the " $5-38$ Student eTool (Desmos)."
5-38 Student eTool (Desmos)

1. Move the slider to the desired angle. Use the diagram and your knowledge of trigonometry to solve the parts in problem 5-38.

CCG 5.3.5: 3D Model Box (CPM)

Click on the "3D Model Box (CPM)" link below.

3D Model Box (CPM)

Click on the box and drag.

Drag the box until you have viewed all sides including the views from the top and bottom.

CCG 5.3.4: 5-107c Student eTool (Desmos)

Click on the link below for the " $5-107 \mathrm{c}$ Student eTool (Desmos)."

5-107c Student eTool (Desmos)
Use slider to change $m \angle B$.

5-107. In problem 5-108, you debermiced Pat K was
possibie to creste two dikerent tvianges because you possibie to crese two ciflerent triangies because you
were given orly tioo side bengta and sn angle not were given orly teo side bengts and an angle not
betwen twem. When this happens, is is caled viange between twa. When this hapoenk in is caled vange
ambiguity since you carnot well which triangle was the one you were supposed to find. WI there alway be tien possibie triangies? Can there ever be more than two possibie triangles? Think about this as you answer the questions below.
c. Test your conjectures from part (b). Try to leam everything you can about SSA triangles. Use the questions bolow to guide your investigation

- Can you ind a way to create three poss ble triangles - Is it ever impossiblie to form a triangle?
- Is it possible to choose SSA information that wI create only one triangle? How?

HINT: Drag the BLUE point to test your corjectures from part (b).

HINT: Use the slider below to change the mce
$B=30$

Chapter 6

CCG 6.1.1: 6-1 Student eTool (CPM)

Click on the link below to access the eTool.

6-1 Student eTool (CPM)

HINT: Use the transformation tools to translate, rotate, and reflect the triangles to explore your idea. Click the center of each triangle to access these tools. For more directions, click the "?" icon above.

CCG 6-1 Student eTool

Notes

6-1. Examine the triangles at right.
b. Are these triangles also congruent? Explain how you know.

HINT: Use the transformation tools to translate, rotate, and reflect the triangles to explore your idea. Click the center of

Show/Hide Labels
Side Lengths and Ratios

CCG 6.1.3: 6-20a, 6-20b \& 6-21 (CPM)

Click on the links below to access eTools.
6-20a (CPM)
6-20b (CPM)
6-21 (CPM)

Use the eTools to prove triangle congruence. Move triangle ABC onto triangle DEF to prove the triangles are congruent.

CCG 6-20a Student eTool

∇ Notes

6-20. A team is working together to try to
prove SAS =. Oiven the triangles shown
below, they want to prove that
$\triangle A B C=\triangle D E F$.
2. Use the efool to move $\triangle A B C$ onto
$\triangle D E F$ to prove these triangles are
congruent.

- Show/Hide Labels
- Side Lengths and Ratios

Drag the triangles from the center to translate. Click on the center of the triangle to access rotation tools.

Drag the triangles from the center to translate. Click on the center o the triangle to access rotation tools.

6-21 Student eTool

∇ Notes

CCG 6-21

a. Given: Green Sides and Red and Blue

Angles
b. Drag triangles from the center to translate c. Click on the center of a triangle to access the rotate, reflect, and dilate tools.
d. Click on the "?" above for more directions.

Show/Hide Labels

Side Lengths and Ratios

C

CCG 6.2.4: Monty Hall Technology Tool

Click on the link below for the "Monty Hall Technology Tool"

Monty Hall Technology Tool
1.

2.

Click '!' to keep your first choice or '?' to change it

Keep choice: 100 times
Wins: 32 cars (32\%)
Losses: 68 goats (68\%)

Change choice: 0 times
Wins: 0 cars (0%)
Losses: 0 goats (0\%)
3.

4.

5.

CCG 6.2.5: Snowflake Videos

Click on the links below for the "Snowflake Videos (Vimeo)"
Snowflake Materials Preparation (Vimeo) $\quad=$
Using Transformations \& Symmetry to Create a Snowflake (Vimeo)
1.

2.

3.

4.

5.

CPM CPM Educational Program

6.

Chapter 7

CCG 7.1.1: 7-1b Student eTool (Desmos)

Click on the links below to access eTool.
7-1b Student eTool (Desmos)
Use the eTool for problem 7-1 to see what happens to a point on a wheel as it turns.

CCG 7.1.3: 7-21 Student eTool (Desmos)

Click on the link below to access eTool.

7-21 Student eTool (Desmos)

Move the slider or the stereo along the cabinet to determine where the sound system should be placed.

Chapter 8

CCG 8.1.3: Exterior Angles (Desmos)

Click on the links below to access eTools.

CCG 8-26f1 Student eTool: Exterior Angles: Triangles (Desmos)
CCG 8-26f2 Student eTool: Quadrilaterals (Desmos)
CCG 8-26f3 Student eTool: Pentagons (Desmos)
CCG 8-26f4 Student eTool: Hexagons (Desmos)

1. Triangles:

2. Quadrilaterals:

3. Pentagons:

4. Hexagons:

CCG 8.3.2: 8-100 Student eTool (Desmos)

Click on the link below to access eTool.

8-100 Student eTool (Desmos)

Move the slider to explore circle area and perimeter.

Chapter 9

CCG 9.1.1: 9-2 Student eTool (CPM)

Click on the links below to access eTool.

9-2 Student eTool (CPM)

See 3D Bocks eTool for instruction on how to use the blocks.

Use eTool to create solids in problem 9-2.

9-2. Another way to represent a three-dimensional solid is by its side and top views.

For example, the solid from problem 9-1 can also be represented by a top, front, and right-hand view. Each view shows all of the blocks that are visible when looking directly at the solid from that direction.

Examine the diagram of blocks at right. On graph paper, draw the front, right, and top views of this solid. Assume that there are no hidden blocks.

HINT: Click any of the squares on the mat and the top of any block to build. Click the side of any block to remove. Drag about the outside of the model to rotate.

CCG 9.1.1: 9-4 Student eTool (CPM)

Click on the links below to access eTool.

9-4 Student eTool (CPM)

See 3D Bocks eTool for instruction on how to use the blocks.

Build Meagan's shape in problem 9-4 with the eTool.

9-4. Meagan built a shape with blocks and then drew the views shown below.
a. Build Meagan's shape in the 3d view at right. Use as few blocks as possible.
b. What is the volume of Meagan's shape?
c. Draw a mat plan for her shape.

V Right View

| Top View |
| :---: | :---: |
| \lceil I I |

CCG 9.1.2: 9-14 Student eTool (CPM)

Click on the links below to access eTool.

9-14 Student eTool (CPM)

See 3D Bocks eTool for instruction on how to use the blocks.

Build Heidi's solid using the eTool.

Chapter 11

CCG 11.2.2: 11-92 Student eTool (Desmos)

Click on the link below to access eTool.
11-92 Student eTool (Desmos)

Drag the red 'Satellite' point to each Satellite (A, B and C). The angle measurements for D, E and F will display.

