CC Integrated I eTools

Table of Contents

General Tools 4
Algebra Tiles (CPM) 5
Pattern Tile \& Dot Tool (CPM) 8
Rigid Transformations eTool (CPM) 10
Similarity Toolkit (CPM) 13
Desmos Graphing Calculator. 15
Chapter 1 18
INT1 1.1.2: 1-11 Lab A Student eTool (CPM) 19
INT1 1.1.2: 1-13 Lab A, B, \& C Student eTools (Desmos) 21
INT1 1.1.3: 1-25 \& 1-26 Student eTools (Desmos) 23
Chapter 2 26
INT1 2.1.1: 2-1, 2-2, \& 2-5 Student eTools (CPM). 27
INT1 2.1.3: Slope Ratios (Desmos) 29
INT1 2.1.4: 2-36 Student eTool (Desmos) 30
INT1 2.3.2: 2-100 Line Factory Logo Student eTool (Desmos) 31
INT1 2.3.3: Save the Earth: Practice Games 1-3 (Desmos) 32
INT1 2.3.3: Function Grapher Game (Desmos) 35
Chapter 3 36
INT1 3.1.1: 3-1 3D Nets 37
INT1 3.1.2: Transformations with 3-14 \& 3-15a, c 40
INT1 3.1.6: 3-62 eTool (Desmos) 42
INT1 3.2.1: 3-73 Student eTool (CPM) 43
INT1 3.2.1: 3-74 Student eTool 44
INT1 3.2.2: 3-83 Student eTool (CPM) 45
Chapter 4 46
Int1 4.1.4: 4-31 Student eTool (Desmos) 47
Int1 4.1.4: 4-34 Student eTool (Desmos) 48
Int1 4.1.4: 4-35 Student eTool (Desmos) 49
Int1 4.2.1: 4-48, 4-49, 4-51, 4-52, 4-52 Student eTools (Desmos) \& 4-52 Random Point Generator (G-sheet) 50
Int1 4.2.2: 4-68 Student eTool (Desmos) \& 4-73 Student eTool (Desmos) 54
Int1 4.2.4: 4-92, 4-93, 4-49 Student eTools (Desmos) 56
Chapter 5 58
INT1 5.1.1: 5-4 Student eTool (Desmos) 59
INT1 5.3.1: 5-83 Student eTool (Desmos) 60
INT1 5.3.1: 5-84 Student eTool (Desmos) 61
Chapter 7 62
INT1 7.1.2: 7-13b Student eTool (CPM) 63
INT1 7.1.2: 7-16 Student eTools (CPM) 64
INT1 7.1.5: 7-52, 7-53, 7-54, 7-56 \& 7-57 Student eTools (CPM) 66
INT1 7.1.6: 7-65a, 7-65b \& 7-66 Student eTools (CPM) 69
Chapter 8 71
INT1 8.1.1: 8-2 Student eTool (Desmos) 72
INT1 8.1.2: 8-22 Student eTool (Desmos) 73
INT1 8.1.4: 8-54 \& 8-55 Student eTool (Desmos) 74
INT1 8.2.2: 8-103 Student eTool (Desmos) 75
INT1 8.2.2: 8-104 Student eTool (Desmos) 77
INT1 8.2.2: 8-105 Student eTool (Desmos) 78
Chapter 9 80
INT1 9.2.2: 9-53 Student eTool (Desmos) 81
INT1 9.3.2: 9-78 Student eTool (Desmos) 82
INT1 9.3.3: 9-88 Student eTool (Desmos) 83
Chapter 10 85
INT1 10.1.3: 10-43 Student eTool (Desmos) 86
INT1 10.1.4: 10-60 Student eTool (Desmos) 87
Chapter 11 88
INT1 11.2.6: 11-116 Student eTool (Desmos) 89

General Tools

Algebra Tiles (CPM)

This tutorial describes how to use the Algebra Tiles including additional features.

Click on the link below to access eTool.

Algebra Tiles (CPM)

1. The top bar has three main parts: Pen \& Paper Icon, '?' Icon, and the Arrow Icon.

1. Select the Pen \& Paper Icon to:

Options - Add Title and Description and Enable/Disable Tools.
Clear Tiles - This will remove all the tiles that are in the tile area.
Save - This will save all the changes made.
2. Select the '?' icon for directions.
3. Select the Arrow Icon at the right to open and close the tray.

2. Drag tiles from the tray at the left to the display area at the right.

1. Select one of the tiles and drag it to the tile area.
2. Use the sliders in the tray to change the size of the tiles.
3. Double click tiles to change orientation (horizontal/vertical).
4. Click on a tile once to change the sign (+ -).

Note: The color of the tile will turn to red for negative sign.

3. Choose from a variety of different mats. Also choose from a variety of sizes to fit on various devices.

	No Background		
	Grid		
	Dot Grid		
	Expression Mat		
$=$	Equation Mat 1		
	Equation Mat 2		
?	Comparison Mat 1		
	Comparison Mat 2		
	Cornerpiece		
Fit	Phone	S. Tablet	Tablet

4. Choose from a variety of different tiles:

- Click the arrow next to the tool to view/hide the options for each tool.

Pattern Tile \& Dot Tool (CPM)

Click on the link below.

Pattern Tile \& Dot Tool

1. Drag tiles from the tray to the Display area.

- Add tiles and copy and paste them to the display area.
- Select all tiles and drag to the tray to remove the tiles.

2. Textboxes and Dots

- Located in the General Tools
- Drag out and choose border/no border and color.
- Double click to rotate.
- Click to add text.

(E)? CPM Tiles

Pattern Tiles \& Dot eTool

1. Use the square below for tiles.
2. Use the dot in the General Tools for dots.
3. Right Click or tap hold for color options.
4. Copy and paste for large number of tiles and dots.
5. Select all and drag to this tray to remove.
6. Select and drag to the mat textboxes in the General Tools menu to use as labels.
7. SAVE your work by copying and pasting the URL found in the Penci//Paper icon above to a doc or spreadsheet.

Rigid Transformations eTool (CPM)

This eTool will record the steps you create showing translation, rotation, and reflection.

Click on the first link for the eTool. Click on the video links to view the use of the eTool.

- Twelve games using the key lock are also available.
- This tool is designed so that teachers/students can create many more games.

Rigid Transformations
Using RT Tool
Creating an RT Puzzle [-1

1. Steps are shown in the Tray at the left while the action occurs in the Display Area at the right.

2. When playing, active steps are highlighted.

3. In the gear menu, you can create puzzles, clear, or save your projects.

4. Check the "?" for more help or watch the videos above.

Similarity Toolkit (CPM)

The similarity toolkit allows students to explore two triangles to determine congruency or similarity given SSS, SSA, SAS, AAA, etc.. Students show how two triangles are similar or congruent using rigid transformations (translation, rotation, and reflexion).

1. Click on the "Similarity Toolkit" link below. For additional help, click on the "Similarity Toolkit Video".

Similarity Toolkit Video
Similarity Toolkit (CPM)

2. Similarity Toolkit Basic Controls:

3. Indicate what sides/angles are similar/congruent.

4. By going to the Advanced Settings, indicate what angles and sides you want shown!

Desmos Graphing Calculator

This free graphing calculator allows students to create a free account to save all of their graphs, animations, and projects created.

Click on the "Desmos Graphing Calculator" link below.
Desmos Graphing Calculator

1. Click on all of the buttons. Try it out! For extra help, click the "?".

2. Click on the interactive tours below for help to create:

Sliders
Tables
Advanced Tables
Restrictions

3. The interactive tours will NOT let you make a mistake! Try the links above!

Interactive Tours
Team Desmos
posted this on December 29, 2013 22:13

Try one (or alll) of the interactive tours to learn more about sliders, tables, restrictions, and more:

4. Need additional help? Watch these very short excellent videos!

Desmos Introduction
Moveable Points
Graph Inequalities
Piece-Wise Function
5. The video links will help you with many of your graphing projects!

6. If you still need help, check out Desmos "Knowledge Base"

 Desmos Knowledge Base
Chapter 1

INT1 1.1.2: 1-11 Lab A Student eTool (CPM)

Click on the links below.

1-11 Lab A Student eTool (CPM)

1. Drag to build rectangular shapes recording the length and width.

E) ? CPM Tiles

Int1 1-11 Lab A Student eTool
Use the square tiles to find as many rectangular configurations as you can. Remember to record the length and the width of each rectangle you find. Assume that Perry's yard is big enough to accommodate any rectangular design you create and that it matters which dimension is the width and which is the length.

MOVING TILES

Drag each tile to a new location. Or click and drag about several tiles to drag to a new location.

General Tools

Text

2. Drag several tiles at once.

INT1 1.1.2: 1-13 Lab A, B, \& C Student eTools (Desmos)

Click on the links below.

1-13 Lab A Student eTool (Desmos)
1-13 Lab B Student eTool (Desmos)
1-13 Lab C Student eTool (Desmos)

1. 1-13 Lab A Student eTool (Desmos):

2. Int1 1-13 Lab B Student eTool (Desmos):

3. Int1 1-13 Lab C Student eTool (Desmos):

INT1 1.1.3: 1-25 \& 1-26 Student eTools (Desmos)

Click on the links below.

INT1 1-25 Student eTool (Desmos)
INT1 1-26 Student eTool II (Desmos)
INT1 1-26 Student eTool III (Desmos)
INT1 1-26 Student eTool IV (Desmos)

1. Int1 1-25 Student eTool:

2. Int1 1-26 Student eTool II:

3. Int1 1-26 Student eTool III:

4. Int1 1-26 Student eTool IV:

Chapter 2

INT1 2.1.1: 2-1, 2-2, \& 2-5 Student eTools (CPM)

Click on the links below.

INT1 2-1 Student eTool (CPM)
INT1 2-2 Student eTool (CPM)
INT1 2-5 Student eTool (CPM)

1. INT1 2-1 Student eTool (CPM):

INT1 2-1 Student eTool
Complete the following tasks for Pattern A, recording your work on the resource page or on your paper as appropriate.
a. What do you notice about the pattern?
b. Sketch the next figure in the sequence (Figure 4) for Pattern A on your resource page. Figure 0 is the name of the figure that comes before Figure 1. Sketch Figure 0.
c. By how much is tile Pattern A growing? Where are the tiles being added with each new figure?
d. What would Figure 100 look like for Pattern A? Describe it in words. How many tiles would be in the 100th figure? Find as many ways as you can to justify your conclusion.
e. Write an equation that relates the figure number, x, to the number of tiles, y.

2. INT1 2-2 Student eTool (CPM):

INT1 2-2 Student eTool

a. What do you notice about the pattern?
b. Sketch the next figure in the sequence (Figure 4) for Pattern A on your resource page. Figure 0 is the name of the figure that comes before
Figure 1. Sketch Figure 0.
c. By how much is tile Pattern A growing? Where are the tiles being added with each new figure?
d. What would Figure 100 look like for Pattern A? Describe it in words. How many tiles would be in the 100 th figure? Find as many ways as you can to justify your conclusion.
e. Write an equation that relates the figure number, x, to the number of tiles, y.

3. INT1 2-5 Student eTool (CPM):

INT1 2.1.3: Slope Ratios (Desmos)

Click on the link below for the "Slope Ratios" eTool.

Slope Ratios

1. Use the sliders to:

- Select an angle.
- Change the length of the adjacent side, delta x.
- The opposite side length, delta y , and the slope are calculated below.

INT1 2.1.4: 2-36 Student eTool (Desmos)

Click on the link below.

INT1 2-36 Student eTool (Desmos)

INT1 2-36 Student eTool (Desmos):

You are an engineer at the city's premiere Line Factory. Your job is to process customers' orders for lines.

Analyze the recent orders below. If the customer has provided enough information to produce one (and only one) line, then pass it on to your production department with an equation and a graph. However, f you do not have enough information to draw one specific line, draw at least two lines that fit the order and send it back to the customer. If the order is not a line, write a note to the customer explaining why it is not a line.

The Line Factory standardizes its graphs by scaling the axes from -10 to 10 in both directions.
a. Line A goes through the point $(2,5)$.
b b. Line B has a slope of -3 and goes through the origin.
c. Line C goes through points $(-3,-2)$ and $(3,10)$.
d. Line D has the following table. (Click Circle at Left to view table.)

- Line E grows by 4.
f. Line F goes through the point $(8,-1)$ and has a slope of $-3 / 4$.
p. Customer G sent the following table. (Click Circle苞 $-\quad$ Left to view table.)

INT1 2.3.2: 2-100 Line Factory Logo Student eTool (Desmos)

Click on the link below.

INT1 2-100 Line Factory Logo Student eTool (Desmos)

1. INT1 2-100: Design A and B

INT1 2.3.3: Save the Earth: Practice Games 1-3 (Desmos)

Click on the link below for the "Save the Earth"

INT1 Save the Earth: Practice Games 1-3 (Desmos)

1. Click and unclick the Game desired.

Save the Earth: Practice Games 1-3

Game Directions:

Type in functions above to cross the most points. Your game points equals the number of (points crossed) ${ }^{\wedge} 2$. Then move your points to the upper left comer to indicate they are out of play. When all points are crossed, click the circle on the left of the game. Then click the next game's circle.

Type your function below:
$y=($ your rule $)$
Type Function Here

Game 1: Click the folder at left to hide gume when completed.

- Game 2: Click the circle at left to asturete. Click it again to hide the game.
- Game 3: Click the circle at left to
activete. Click it again to hide the game.

2. Game 1: See example below for an entered function.

3. Game 2:

CPM Educational Program

4. Game 3:

INT1 2.3.3: Function Grapher Game (Desmos)

Click on the link below for the "Function Grapher Game"

INT1 Function Grapher Game (Desmos)

1. Enter your rule to cross the most points.

Chapter 3

INT1 3.1.1: 3-1 3D Nets

These nets are interactive. Click on the sides to raise or lower them. Drag in a circular motion outside of the net to rotate in space. Go the the "?" for more help!

Click on the link below.

INT1 3-1 3D Nets (CPM)

1. INT1 3-1a:

2. Get the other nets by going to the Edit menu!

3. INT1 3-1b:

4. INT1 3-1 c:

5. INT1 3-1d:

INT1 3.1.2: Transformations with 3-14 \& 3-15a, c

Click on the links below.

3-14 Student eTool (Desmos)
3-15a Student eTool (Desmos)
3-15e Student eTool (Desmos)

1. 3-14: Click the folder buttons to view.

2. 3-15a: Click the folder buttons to view the reflections. Drag the slider to view the rotation.

3. 3-15e: Drag the Angle Slider to view the rotation.

INT1 3.1.6: 3-62 eTool (Desmos)

Click the link below.

3-62 Student eTool (Desmos)

INT1 3-62 eTool (Desmos)

Move the slider to rotate the figure.

INT1 3-62 eTool

Move the slider through 360 degrees.
How many times does the shape rotate
back onto itself?

$A_{\text {ngle }}=80$

INT1 3.2.1: 3-73 Student eTool (CPM)

Click on the link below:

3-73 Student eTool (CPM)

INT1 3-74 Student eTool:

INT1 3-73 Student eTool
The algebra tiles will be named according to each of their areas. The tiles have a positive side and a negative side.

For each of the composite polygons formed by algebra tiles below:
a. Sketch the polygon on your paper.
b. Label each tile on your sketch with its area. Write a simplified expression that represents the total area of the polygon.
c. Write a simplified expression that represents the total outside perimeter.
3-73 c. i.
c. ii.

INT1 3.2.1: 3-74 Student eTool

Click on the link below.

3-74 Student eTool (CPM)

INT1 3-74 Student eTool:

3-74. Use this eTool to complete the following problems.
a. Arrange the algebra tiles into one large rectangle, with the $x^{\wedge} 2$-tile in the lower left comer. Remember to flip the algebra tiles so that the positive side of each tile is facing up. On your paper, sketch what your rectangle looks like.
b. The area of a rectangle can be written as the sum of the areas of all its parts. Write the area of the rectangle as the sum of its parts. Simplify your expression for the sum of the rectangle's parts.
c. The area of a rectangle can also be written as length \times width. What are the dimensions (length and width) of the overall rectangle you made? Label your sketch with its dimensions, then write the area of the rectangle as a product, that is, length \times width.
d. Write an equation that shows that the area written as a sum is
equivalent to the area written as a product.

INT1 3.2.2: 3-83 Student eTool (CPM)

Click on the link below:

3-83 Student eTool (CPM)

INT1 3-83 Student eTool (CPM):

INT1 3-83 Student eTool

3-83. Sketch the algebra tile figure on your paper. Write a simplified expression for the area and for the perimeter.

- Algebra Tiles
- General Tools

Chapter 4

Int1 4.1.4: 4-31 Student eTool (Desmos)

Click on the links below.

4-31 Student eTool (Desmos) (Desmos)

1. Int1 4-31 Student eTool (Desmos)

Int1 4.1.4: 4-34 Student eTool (Desmos)

Click on the links below.
4-34 Student eTool (Desmos)

1. 4-34 Student eTool (Desmos)

Int1 4.1.4: 4-35 Student eTool (Desmos)

Click on the links below.

4-35 Student eTool (Desmos)

1. 4-35 Least Squares Student eTool (Desmos)

- Use this etool to visually position a line of best fit.
- Click the circles to view the actual line of best fit.
- Click the circles to view the residuals and the square of the residuals.

Int1 4.2.1: 4-48, 4-49, 4-51, 4-52, 4-52 Student eTools (Desmos) \& 4-52 Random Point Generator (G-sheet)

Click on the links below.

4-48 Student eTool (Desmos)
4-49 Student eTool (Desmos)
4-51 Student eTool (Desmos)
4-52 Student eTool (Desmos)
4-54 Random Point Generator (Google Sheet)
4-54 Student eTool (Desmos)

Int1 4-48 Student eTool (Desmos):

4-48. In problem 4-1, you completed an investigation that helped Robbie use viewing tube to see a foctbal game. Sample data from problom 4-1 is shawn in the table below.

x_{1}	$\because y_{1}$
144	20.7
132	19.6
120	17.3
108	16.2
96	14.8
84	13.1
72	11.4
60	9.3

a. Create a scatterplot and LSRL

Sketch the graph on your poper. What is the equation of the LSRL?

HINT: To show the LSRL, click the circle in
line 6. For more help go to
httpsilluww.desmos comicalouiator?
tour-regressions
$y_{1} \sim m x_{1}+b$

Int1 4-49 Student eTool (Desmos):

4-49. Giula's father would like to open a restaurant, and is deciding how much to charge for the toppings on pizza. He sent Giula to eight different restaurants around town to find out how much they each charge. Giulia retumed with the following information:

Int1 4-51 Student eTool (Desmos)

4-51. Help Gulia analyze the residuals for the pizza parlors in problem 4-49 as described below.

x_{1}	$\because y_{1}$
1	10.50
3	9.00
4	14.00
6	15.00
3	12.50
5	16.50
0	8.00
2	9.00

a. Mark the residuals on the scatterplot you created in problem 4-49. If you want to purchase an inexpensive pizza, should you go to a store with a positive or negative residual?
b. What is the sum of the residuals? Are you surprised at this result?
c. Make a residual plot using your calculator, with the x-axis representing the number of pizza toppings, and the y-axis representing the residuals. Interpret the scatter of the points on the residual plot. Is a linear model

Int1 4-52 Student eTool (Desmos):

Random Point Generator \& Int1 4-54 Student eTool (Desmos):

- Duplicate the Google Sheet for your personal use!
- Modify the settings.
- Press refresh to obtain new random numbers.
- Copy and Paste both columns into the 4-54 Student eTool (Desmos).
- A table of values will be created and the data plotted on the graph.
- Press the wrench on the upper right corner to set the Range and Domain for the graph.

Int1 4.2.2: 4-68 Student eTool (Desmos) \& 4-73 Student eTool (Desmos)

Click the links below:

4-68 Student eTool (Desmos)
4-73 Student eTool (Desmos)

Int 4-68 Student eTool (Desmos):

4-68. CORRELATION COEFFICIENT

Your Task: With your team, explore the interpretation of the correlation coefficient r .
Work with your team to discuss and record all of your conclusions about the value of r from this investigation.

- Select any three points in the first quadrant.
- Use your calculator to make a scatterplot and determine the LSRL. Make a sketch of the scatterplot in your notebook, and record the value of the correlation coefficient, r .
- Continue to investigate different combinations of three points, graphing each of their scatterplots and recording the corresponding value of r.

HINT: Drag the GREEN points about to change the position of the line of best fit and the r-value.

Int 4-73 Student eTool (Desmos):

4-73. An eTool is available to help you explore the correlation coefficient further.
a. Add some points to the graph by adding points to the table below. The eTool will plot the LSRL line and calculate the correlation coefficient, r, below.

x_{1}	$\Leftrightarrow y_{1}$	(\%) ϵ_{1}
2	11	-0.36363836
5	20	94545455
18	7	0
4	3	-7.8181818
12	6	-2.6363636
12	10	1.3636364
*..	-...	

$y_{1} \sim m x_{1}+b$

stamstics	RESIDUALS
$\begin{aligned} r^{2} & =0.08095 \\ r & =-0.2845 \end{aligned}$	e_{1}
PMRAMETERS $m=-0.272727$	$b=11.9091$

b. Clear the graph by deleting all of the points in the table above. Then create scatterplots by adding points in the table with the each of the fillmwinn asenriatione

Int1 4.2.4: 4-92, 4-93, 4-49 Student eTools (Desmos)

Click on the links below

4-92 Student eTool (Desmos)
4-93 Student eTool (Desmos)
4-95 Student eTool (Desmos)

Int1 4-92 Student eTool:

Int1 4-93 Student eTool:

Int1 4-95 Student eTool:

4-95. When Gulia wert around town in probiem 4-49 comparing the price of pizzas, she gathered this data.

x_{1}	$\because y_{1}$
1	20.50
3	9.00
4	1400
6	15.00
3	12.00
5	16.50
0	8.00
2	9.00

$y_{1} \sim m x_{1}+b$	
Stansics	nesoumes
$\begin{array}{r} r^{2}=0.7224 \\ r=0.8516 \end{array}$	A_{1} prast
$\pi=-1.85714$	b-7.7410f

a. What is the LSRL? Interpret the y intercept in confext.

Chapter 5

INT1 5.1.1: 5-4 Student eTool (Desmos)

Click on the link below.

5-4 Student eTool (Desmos)

Int1 5-4 Student eTool (Desmos)

INT1 5.3.1: 5-83 Student eTool (Desmos)

Click on the link below.

5-83 Student eTool (Desmos)

INT1 5-83 Student eTool (Desmos)

INT1 5.3.1: 5-84 Student eTool (Desmos)

Click on the link below.

5-84 Student eTool (Desmos)

INT1 5-84 Student eTool (Desmos)

Chapter 7

INT1 7.1.2: 7-13b Student eTool (CPM)

Click on the link below to access eTool.
7-13b Student eTool (CPM)

Use the eTool to solve part (b) of problem 7-13.
? CPM Similarity

Int1 7-13b
$\boldsymbol{\nabla}$ Notes
b) Can you make another triangle, with
the same angles, that is not similar to
any two triangles with the same three angle measures that are not similar?

Tip: Test your ideas with transformations!

- Show/Hide Labels
- Side Lengths and Ratios

INT1 7.1.2: 7-16 Student eTools (CPM)

Click on the links below to access eTools.

7-16 set 1 Student eTool (CPM)
$7-16$ set 2 Student eTool (CPM)
For more information on Similarity eTools, view Similarity Toolkit (CPM).

INT1 7-16 set 1 Student eTool (CPM):

INT1 7-16 set $\mathbf{2}$ Student eTool (CPM):

*? CPM Similarity

Int1 7-16 set 2

- Notes
- Show/Hide Labels
- Side Lengths and Ratios

INT1 7.1.5: 7-52, 7-53, 7-54, 7-56 \& 7-57 Student eTools (CPM)

Click on the links below to access eTools.
7-52 Student eTool (CPM) 7-53 Student eTool (CPM) 7-54 Student eTool (CPM) 7-56 Student eTool (CPM) 7-57 Student eTool (CPM)

Use these eTools investigate what conditions are necessary to determine if triangles are similar.

For more information on Similarity eTools, view Similarity Toolkit (CPM).

INT1 7-52 Student eTool (CPM):

INT1 7-53 Student eTool (CPM):

INT1 7-53 Student eTool

7 Notes
Are these triangles always congruent? Explain how you know.

Tip: Use the transformation tools:
translate, rotate, reflect, and dilate to
explore your ideas. For directions, click
the "?' above.
Show/Hide Labels

- Side Lengths and Ratios

INT1 7-54 Student eTool (CPM):

| Int1 7-54 |
| :--- | :--- |
| Int1 7-54 |
| |
| |
| |
| Show/tes |
| Side Lengths and Ratios |

INT1 7-56 Student eTool (CPM):

INT1 7-57 Student eTool (CPM):

Int1 7-57
Notes
Triangle $A B C$ is currently congruent to triangle EFD. Is it possible to have SSA and have two different triangles which are not congruent? Experiment by moving the angles.

Show/Hide Labels
Side Lengths and Ratios

INT1 7.1.6: 7-65a, 7-65b \& 7-66 Student eTools (CPM)

Click on the links below to access eTools.

7-65a Student eTool (CPM) 7-65b Student eTool (CPM) 7-66 Student eTool (CPM) For more information on Similarity eTools, view Similarity Toolkit (CPM).

PROVING SAS TRIANGLE CONGRUENCE

INT1 7-65a Student eTool (CPM):

INT1 7-65b Student eTool (CPM):

7 7-65b Student eTool
\boldsymbol{V} Notes
inT1 7-65b
a. Drag triangles from the center to translate.
b. Click on the center of a triangle to access
the rotate, reflect, and dilate tools.
c. Click on the "?" above for more directions.
D Show/Hide Labels
Side Lengths and Ratios

PROVING ASA TRIANGLE CONGRUENCE

INT1 7-66 Student eTool (CPM):

7-66 Student eTool
∇ Notes
INT1 7-66
a. Given: Red sides and green and blue
angles
b. Drag triangles from the center to translate.
c. Click on the center of a triangle to access
the rotate, reflect, and dilate tools.
d. Click on the "?" above for more directions.
Show/Hide Labels
Side Lengths and Ratios

Chapter 8

INT1 8.1.1: 8-2 Student eTool (Desmos)

Click on the link below to access eTool.

8-2 Student eTool (Desmos)

Explore different values of \mathbf{b} in problem 8-2.

INT1 8.1.2: 8-22 Student eTool (Desmos)

Click on the link below to access eTool.

8-22 Student eTool (Desmos)

Explore problem 8-22 with the eTool.

INT1 8.1.4: 8-54 \& 8-55 Student eTool (Desmos)

Click on the link below to access eTool.
8-55 \& 8-55 Student eTool (Desmos)

Decide what your dependent and independent variables are for "The Penny Lab" data your team collected, clearly label them, and graph your data.

INT1 8.2.2: 8-103 Student eTool (Desmos)

Click on the link below:

8-103 Student eTool (Desmos)

INT1 8-103 Student eTool (Desmos):

INT1 8.2.2: 8-104 Student eTool (Desmos)

Click on the link below:

8-104 Student eTool (Desmos)

INT1 8-104 Student eTool (Desmos):

INT1 8.2.2: 8-105 Student eTool (Desmos)

Click on the link below:

8-105 Student eTool (Desmos)

INT1 8-105 Student eTool (Desmos):

HINT: Click the circle to the left of y 3 below to show the data from 1982-1996.

x_{3}	y_{3}
82	19403
84	19008
86	20410
88	21210
90	21917
92	22278
94	22640
96	23960

e. Use your calculator to delermine a regression line for the data from 1982 - 1996.

HINT: See the eTools for problems 6-105 and 6106 for regression formulas. Be sure to use x 3 and y 3 for your variables.

f. Comment on the residuals plot.

g. With this new linear model, can you make a
g. With this new linear model, can you make a
better prediction than you did in part (a) for the amount of oil produced in 1996?

Chapter 9

INT1 9.2.2: 9-53 Student eTool (Desmos)

Click on the link below to access eTool.

9-53 Student eTool (Desmos)
Write your inequality in the eTool below to graph the constraints on receiving foreign aid. Then identify the countries that should receive foreign aid.

INT1 9.3.2: 9-78 Student eTool (Desmos)

Click on the link below to access eTool:
9-78 Student eTool (Desmos)

Your team must determine where to send the search and rescue teams. Look carefully for information that will help determine where the balloon might be found. Identify the probable landing sight on the map.

INT1 9-78 Sudent eTool

Im completely lost... water everywhere I can see... both bumers have failed... Wain I se land. I'm going to try to land. Ithink is's. Those were the last words heard from Haroid in his hot-air balloon. The last time the balloon showed up on radar, it was near the Solomon Islonds in the Parific Ocean--

Your Task: Your team must determine where to send the search-and-rescue teams! Use the following reperts along with the map and look carefilly for information that will help you draw constraints on where the balloon might be found. Give the search constraints to the search-andrescue team as a system of inequalities. Be sure to identify the probable landing site on the map

PCick the arrow at left to show the reports.
HINT: Use the reports above to write inequalities to find a plausble rescue region.

INT1 9.3.3: 9-88 Student eTool (Desmos)

Click on the link below to access eTool:
9-88 Student eTool: Class Graph (Desmos)

Type an inequality expressing how many food and medicine packages your country is able to give. Let x equal the number of food packages and y equal the number of medicine packages.

Chapter 10

INT1 10.1.3: 10-43 Student eTool (Desmos)

Click on the link below to access eTool:
10-43 Student eTool (Desmos)
Create histograms and box plots for Procedure C-2 and C-7 (the time from when 911 was called to the time the parametics reported the bleeding stopped). Click on the circle to view the histogram and box plot for each dataset

INT1 10.1.4: 10-60 Student eTool (Desmos)

Click on the link below to access eTool:

10-60 Student eTool (Desmos)

Create histograms and box plots for Sugar W and P datasets (biologist trying to determine which sugar is more successful in growing a particular eukaryotic cell). Click on the circle to view the histogram and box plot for each dataset.

Chapter 11

INT1 11.2.6: 11-116 Student eTool (Desmos)

Click on the link below to access eTool:

11-116 Student eTool (Desmos)

Write an inequality for each of the four constraints. Graph using eTool.

